There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{48}{(22{x}^{2} + 79x - 45)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{48}{(22x^{2} + 79x - 45)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{48}{(22x^{2} + 79x - 45)}\right)}{dx}\\=&48(\frac{-(22*2x + 79 + 0)}{(22x^{2} + 79x - 45)^{2}})\\=&\frac{-2112x}{(22x^{2} + 79x - 45)^{2}} - \frac{3792}{(22x^{2} + 79x - 45)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2112x}{(22x^{2} + 79x - 45)^{2}} - \frac{3792}{(22x^{2} + 79x - 45)^{2}}\right)}{dx}\\=&-2112(\frac{-2(22*2x + 79 + 0)}{(22x^{2} + 79x - 45)^{3}})x - \frac{2112}{(22x^{2} + 79x - 45)^{2}} - 3792(\frac{-2(22*2x + 79 + 0)}{(22x^{2} + 79x - 45)^{3}})\\=&\frac{185856x^{2}}{(22x^{2} + 79x - 45)^{3}} + \frac{667392x}{(22x^{2} + 79x - 45)^{3}} - \frac{2112}{(22x^{2} + 79x - 45)^{2}} + \frac{599136}{(22x^{2} + 79x - 45)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !