There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{e}{({x}^{2})} - k(\frac{2}{x} + ln(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e}{x^{2}} - \frac{2k}{x} - kln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e}{x^{2}} - \frac{2k}{x} - kln(x)\right)}{dx}\\=&\frac{-2e}{x^{3}} + \frac{0}{x^{2}} - \frac{2k*-1}{x^{2}} - \frac{k}{(x)}\\=&\frac{-2e}{x^{3}} + \frac{2k}{x^{2}} - \frac{k}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !