Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sqrt(x(sqrt(x)sqrt(x)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(xsqrt(x)^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(xsqrt(x)^{2})\right)}{dx}\\=&\frac{(sqrt(x)^{2} + \frac{x*2(x)^{\frac{1}{2}}*\frac{1}{2}}{(x)^{\frac{1}{2}}})*\frac{1}{2}}{(xsqrt(x)^{2})^{\frac{1}{2}}}\\=&\frac{sqrt(x)}{2x^{\frac{1}{2}}} + \frac{x^{\frac{1}{2}}}{2sqrt(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{sqrt(x)}{2x^{\frac{1}{2}}} + \frac{x^{\frac{1}{2}}}{2sqrt(x)}\right)}{dx}\\=&\frac{\frac{-1}{2}sqrt(x)}{2x^{\frac{3}{2}}} + \frac{\frac{1}{2}}{2x^{\frac{1}{2}}(x)^{\frac{1}{2}}} + \frac{\frac{1}{2}}{2x^{\frac{1}{2}}sqrt(x)} + \frac{x^{\frac{1}{2}}*-\frac{1}{2}}{2(x)(x)^{\frac{1}{2}}}\\=&\frac{-sqrt(x)}{4x^{\frac{3}{2}}} + \frac{1}{4x^{\frac{1}{2}}sqrt(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return