Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(-4{x}^{3} - 32{x}^{2} - 56x + 65)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -64x^{9} - 1536x^{8} - 14976x^{7} - 72656x^{6} - 159744x^{5} - 14016x^{4} + 472564x^{3} + 205920x^{2} - 709800x + 274625\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -64x^{9} - 1536x^{8} - 14976x^{7} - 72656x^{6} - 159744x^{5} - 14016x^{4} + 472564x^{3} + 205920x^{2} - 709800x + 274625\right)}{dx}\\=&-64*9x^{8} - 1536*8x^{7} - 14976*7x^{6} - 72656*6x^{5} - 159744*5x^{4} - 14016*4x^{3} + 472564*3x^{2} + 205920*2x - 709800 + 0\\=&-576x^{8} - 12288x^{7} - 104832x^{6} - 435936x^{5} - 798720x^{4} - 56064x^{3} + 1417692x^{2} + 411840x - 709800\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return