There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2{x}^{4} - 4{x}^{2} + 2)}{(4{x}^{4} - 3{x}^{2} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x^{4}}{(4x^{4} - 3x^{2} + 1)} - \frac{4x^{2}}{(4x^{4} - 3x^{2} + 1)} + \frac{2}{(4x^{4} - 3x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x^{4}}{(4x^{4} - 3x^{2} + 1)} - \frac{4x^{2}}{(4x^{4} - 3x^{2} + 1)} + \frac{2}{(4x^{4} - 3x^{2} + 1)}\right)}{dx}\\=&2(\frac{-(4*4x^{3} - 3*2x + 0)}{(4x^{4} - 3x^{2} + 1)^{2}})x^{4} + \frac{2*4x^{3}}{(4x^{4} - 3x^{2} + 1)} - 4(\frac{-(4*4x^{3} - 3*2x + 0)}{(4x^{4} - 3x^{2} + 1)^{2}})x^{2} - \frac{4*2x}{(4x^{4} - 3x^{2} + 1)} + 2(\frac{-(4*4x^{3} - 3*2x + 0)}{(4x^{4} - 3x^{2} + 1)^{2}})\\=&\frac{-32x^{7}}{(4x^{4} - 3x^{2} + 1)^{2}} + \frac{76x^{5}}{(4x^{4} - 3x^{2} + 1)^{2}} + \frac{8x^{3}}{(4x^{4} - 3x^{2} + 1)} - \frac{56x^{3}}{(4x^{4} - 3x^{2} + 1)^{2}} - \frac{8x}{(4x^{4} - 3x^{2} + 1)} + \frac{12x}{(4x^{4} - 3x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !