Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{\frac{x}{(x + a)}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{\frac{x}{(x + a)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{\frac{x}{(x + a)}}\right)}{dx}\\=&e^{\frac{x}{(x + a)}}((\frac{-(1 + 0)}{(x + a)^{2}})x + \frac{1}{(x + a)})\\=&\frac{-xe^{\frac{x}{(x + a)}}}{(x + a)^{2}} + \frac{e^{\frac{x}{(x + a)}}}{(x + a)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return