There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{a}log_{3}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{a}log_{3}^{x}\right)}{dx}\\=&({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)}))log_{3}^{x} + {x}^{a}(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{3}^{x}}{(3)})}{(ln(3))})\\=&\frac{a{x}^{a}log_{3}^{x}}{x} + \frac{{x}^{a}}{xln(3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !