There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{30({x}^{2} - 2{x}^{3} + {x}^{4})}{(1.9sin(x*3.14))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{15.7894736842105x^{2}}{sin(3.14x)} - \frac{31.5789473684211x^{3}}{sin(3.14x)} + \frac{15.7894736842105x^{4}}{sin(3.14x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{15.7894736842105x^{2}}{sin(3.14x)} - \frac{31.5789473684211x^{3}}{sin(3.14x)} + \frac{15.7894736842105x^{4}}{sin(3.14x)}\right)}{dx}\\=&\frac{15.7894736842105*2x}{sin(3.14x)} + \frac{15.7894736842105x^{2}*-cos(3.14x)*3.14}{sin^{2}(3.14x)} - \frac{31.5789473684211*3x^{2}}{sin(3.14x)} - \frac{31.5789473684211x^{3}*-cos(3.14x)*3.14}{sin^{2}(3.14x)} + \frac{15.7894736842105*4x^{3}}{sin(3.14x)} + \frac{15.7894736842105x^{4}*-cos(3.14x)*3.14}{sin^{2}(3.14x)}\\=&\frac{-49.578947368421x^{2}cos(3.14x)}{sin^{2}(3.14x)} + \frac{99.1578947368421x^{3}cos(3.14x)}{sin^{2}(3.14x)} - \frac{49.5789473684211x^{4}cos(3.14x)}{sin^{2}(3.14x)} + \frac{31.5789473684211x}{sin(3.14x)} + \frac{63.1578947368421x^{3}}{sin(3.14x)} - \frac{94.7368421052632x^{2}}{sin(3.14x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !