There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ \frac{{x}^{3}}{(3 - {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{3}}{(-x^{2} + 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{3}}{(-x^{2} + 3)}\right)}{dx}\\=&(\frac{-(-2x + 0)}{(-x^{2} + 3)^{2}})x^{3} + \frac{3x^{2}}{(-x^{2} + 3)}\\=&\frac{2x^{4}}{(-x^{2} + 3)^{2}} + \frac{3x^{2}}{(-x^{2} + 3)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x^{4}}{(-x^{2} + 3)^{2}} + \frac{3x^{2}}{(-x^{2} + 3)}\right)}{dx}\\=&2(\frac{-2(-2x + 0)}{(-x^{2} + 3)^{3}})x^{4} + \frac{2*4x^{3}}{(-x^{2} + 3)^{2}} + 3(\frac{-(-2x + 0)}{(-x^{2} + 3)^{2}})x^{2} + \frac{3*2x}{(-x^{2} + 3)}\\=&\frac{8x^{5}}{(-x^{2} + 3)^{3}} + \frac{14x^{3}}{(-x^{2} + 3)^{2}} + \frac{6x}{(-x^{2} + 3)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{8x^{5}}{(-x^{2} + 3)^{3}} + \frac{14x^{3}}{(-x^{2} + 3)^{2}} + \frac{6x}{(-x^{2} + 3)}\right)}{dx}\\=&8(\frac{-3(-2x + 0)}{(-x^{2} + 3)^{4}})x^{5} + \frac{8*5x^{4}}{(-x^{2} + 3)^{3}} + 14(\frac{-2(-2x + 0)}{(-x^{2} + 3)^{3}})x^{3} + \frac{14*3x^{2}}{(-x^{2} + 3)^{2}} + 6(\frac{-(-2x + 0)}{(-x^{2} + 3)^{2}})x + \frac{6}{(-x^{2} + 3)}\\=&\frac{48x^{6}}{(-x^{2} + 3)^{4}} + \frac{96x^{4}}{(-x^{2} + 3)^{3}} + \frac{54x^{2}}{(-x^{2} + 3)^{2}} + \frac{6}{(-x^{2} + 3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !