There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt((\frac{2g}{l})(1 - cos(x)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{-2gcos(x)}{l} + \frac{2g}{l})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{-2gcos(x)}{l} + \frac{2g}{l})\right)}{dx}\\=&\frac{(\frac{-2g*-sin(x)}{l} + 0)*\frac{1}{2}}{(\frac{-2gcos(x)}{l} + \frac{2g}{l})^{\frac{1}{2}}}\\=&\frac{gsin(x)}{(\frac{-2gcos(x)}{l} + \frac{2g}{l})^{\frac{1}{2}}l}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !