There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(tan(\frac{x}{2}))}^{2}}{(sin(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{tan^{2}(\frac{1}{2}x)}{sin(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{tan^{2}(\frac{1}{2}x)}{sin(x)}\right)}{dx}\\=&\frac{-cos(x)tan^{2}(\frac{1}{2}x)}{sin^{2}(x)} + \frac{2tan(\frac{1}{2}x)sec^{2}(\frac{1}{2}x)(\frac{1}{2})}{sin(x)}\\=&\frac{-cos(x)tan^{2}(\frac{1}{2}x)}{sin^{2}(x)} + \frac{tan(\frac{1}{2}x)sec^{2}(\frac{1}{2}x)}{sin(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !