Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} - 6x + 12)}{(x - 4)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x - 4)} - \frac{6x}{(x - 4)} + \frac{12}{(x - 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x - 4)} - \frac{6x}{(x - 4)} + \frac{12}{(x - 4)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 4)^{2}})x^{2} + \frac{2x}{(x - 4)} - 6(\frac{-(1 + 0)}{(x - 4)^{2}})x - \frac{6}{(x - 4)} + 12(\frac{-(1 + 0)}{(x - 4)^{2}})\\=&\frac{-x^{2}}{(x - 4)^{2}} + \frac{2x}{(x - 4)} + \frac{6x}{(x - 4)^{2}} - \frac{12}{(x - 4)^{2}} - \frac{6}{(x - 4)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return