There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{3} + 4)}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{15} + 20x^{12} + 160x^{9} + 640x^{6} + 1280x^{3} + 1024\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{15} + 20x^{12} + 160x^{9} + 640x^{6} + 1280x^{3} + 1024\right)}{dx}\\=&15x^{14} + 20*12x^{11} + 160*9x^{8} + 640*6x^{5} + 1280*3x^{2} + 0\\=&15x^{14} + 240x^{11} + 1440x^{8} + 3840x^{5} + 3840x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !