Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(ln(2))}{(ln(199 + x) - ln(100))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(2)}{(ln(x + 199) - ln(100))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(2)}{(ln(x + 199) - ln(100))}\right)}{dx}\\=&(\frac{-(\frac{(1 + 0)}{(x + 199)} - \frac{0}{(100)})}{(ln(x + 199) - ln(100))^{2}})ln(2) + \frac{0}{(ln(x + 199) - ln(100))(2)}\\=&\frac{-ln(2)}{(x + 199)(ln(x + 199) - ln(100))^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return