Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(x) + \frac{ln(x)}{x} - \frac{1}{(x + 1)} + cos(60)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x) + \frac{ln(x)}{x} - \frac{1}{(x + 1)} + cos(60)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(x) + \frac{ln(x)}{x} - \frac{1}{(x + 1)} + cos(60)\right)}{dx}\\=&\frac{\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{-ln(x)}{x^{2}} + \frac{1}{x(x)} - (\frac{-(1 + 0)}{(x + 1)^{2}}) + -sin(60)*0\\=& - \frac{ln(x)}{x^{2}} + \frac{1}{2x^{\frac{1}{2}}} + \frac{1}{x^{2}} + \frac{1}{(x + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return