There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}ln(2 + cos(\frac{1}{x}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}ln(cos(\frac{1}{x}) + 2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}ln(cos(\frac{1}{x}) + 2)\right)}{dx}\\=&2xln(cos(\frac{1}{x}) + 2) + \frac{x^{2}(\frac{-sin(\frac{1}{x})*-1}{x^{2}} + 0)}{(cos(\frac{1}{x}) + 2)}\\=&2xln(cos(\frac{1}{x}) + 2) + \frac{sin(\frac{1}{x})}{(cos(\frac{1}{x}) + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !