There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 5{x}^{4}sin(\frac{1}{x}) - {x}^{3}cos(\frac{1}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 5x^{4}sin(\frac{1}{x}) - x^{3}cos(\frac{1}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5x^{4}sin(\frac{1}{x}) - x^{3}cos(\frac{1}{x})\right)}{dx}\\=&5*4x^{3}sin(\frac{1}{x}) + \frac{5x^{4}cos(\frac{1}{x})*-1}{x^{2}} - 3x^{2}cos(\frac{1}{x}) - \frac{x^{3}*-sin(\frac{1}{x})*-1}{x^{2}}\\=&20x^{3}sin(\frac{1}{x}) - 8x^{2}cos(\frac{1}{x}) - xsin(\frac{1}{x})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !