There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4x{\frac{1}{(1 - x)}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4x}{(-x + 1)^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4x}{(-x + 1)^{3}}\right)}{dx}\\=&4(\frac{-3(-1 + 0)}{(-x + 1)^{4}})x + \frac{4}{(-x + 1)^{3}}\\=&\frac{12x}{(-x + 1)^{4}} + \frac{4}{(-x + 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !