There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ cos({e}^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos({e}^{x})\right)}{dx}\\=&-sin({e}^{x})({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&-{e}^{x}sin({e}^{x})\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -{e}^{x}sin({e}^{x})\right)}{dx}\\=&-({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin({e}^{x}) - {e}^{x}cos({e}^{x})({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&-{e}^{x}sin({e}^{x}) - {e}^{(2x)}cos({e}^{x})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !