Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(I(x - \frac{1}{2}r)I(x + \frac{1}{2}r))}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (I^{2}x^{2} - \frac{1}{4}I^{2}r^{2})^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (I^{2}x^{2} - \frac{1}{4}I^{2}r^{2})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(I^{2}*2x + 0)}{(I^{2}x^{2} - \frac{1}{4}I^{2}r^{2})^{\frac{1}{2}}})\\=&\frac{I^{2}x}{(I^{2}x^{2} - \frac{1}{4}I^{2}r^{2})^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{I^{2}x}{(I^{2}x^{2} - \frac{1}{4}I^{2}r^{2})^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(I^{2}*2x + 0)}{(I^{2}x^{2} - \frac{1}{4}I^{2}r^{2})^{\frac{3}{2}}})I^{2}x + \frac{I^{2}}{(I^{2}x^{2} - \frac{1}{4}I^{2}r^{2})^{\frac{1}{2}}}\\=&\frac{-I^{4}x^{2}}{(I^{2}x^{2} - \frac{1}{4}I^{2}r^{2})^{\frac{3}{2}}} + \frac{I^{2}}{(I^{2}x^{2} - \frac{1}{4}I^{2}r^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return