There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a + b{x}^{n}(\frac{1}{(e^{{x}^{c}})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a + \frac{b{x}^{n}}{e^{{x}^{c}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a + \frac{b{x}^{n}}{e^{{x}^{c}}}\right)}{dx}\\=&0 + \frac{b({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))}{e^{{x}^{c}}} + \frac{b{x}^{n}*-e^{{x}^{c}}({x}^{c}((0)ln(x) + \frac{(c)(1)}{(x)}))}{e^{{{x}^{c}}*{2}}}\\=&\frac{bn{x}^{n}}{xe^{{x}^{c}}} - \frac{bc{x}^{c}{x}^{n}}{xe^{{x}^{c}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !