There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(1 - {x}^{2})}^{\frac{1}{2}}}{(2x + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(-x^{2} + 1)^{\frac{1}{2}}}{(2x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(-x^{2} + 1)^{\frac{1}{2}}}{(2x + 1)}\right)}{dx}\\=&(\frac{-(2 + 0)}{(2x + 1)^{2}})(-x^{2} + 1)^{\frac{1}{2}} + \frac{(\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})}{(2x + 1)}\\=&\frac{-x}{(2x + 1)(-x^{2} + 1)^{\frac{1}{2}}} - \frac{2(-x^{2} + 1)^{\frac{1}{2}}}{(2x + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !