There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a + b({x}^{n})(\frac{1}{(({e^{x}}^{n}))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a + b{x}^{n}{e^{x}}^{(-n)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a + b{x}^{n}{e^{x}}^{(-n)}\right)}{dx}\\=&0 + b({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)})){e^{x}}^{(-n)} + b{x}^{n}({e^{x}}^{(-n)}((0)ln(e^{x}) + \frac{(-n)(e^{x})}{(e^{x})}))\\=&\frac{bn{x}^{n}{e^{x}}^{(-n)}}{x} - bn{e^{x}}^{(-n)}{x}^{n}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !