There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sin(2)x + {e}^{(3x + 1)} - 5{x}^{3} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsin(2) + {e}^{(3x + 1)} - 5x^{3} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(2) + {e}^{(3x + 1)} - 5x^{3} + 1\right)}{dx}\\=&sin(2) + xcos(2)*0 + ({e}^{(3x + 1)}((3 + 0)ln(e) + \frac{(3x + 1)(0)}{(e)})) - 5*3x^{2} + 0\\=&sin(2) + 3{e}^{(3x + 1)} - 15x^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sin(2) + 3{e}^{(3x + 1)} - 15x^{2}\right)}{dx}\\=&cos(2)*0 + 3({e}^{(3x + 1)}((3 + 0)ln(e) + \frac{(3x + 1)(0)}{(e)})) - 15*2x\\=&9{e}^{(3x + 1)} - 30x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !