There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(sqrt(2)x + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(xsqrt(2) + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(xsqrt(2) + 1)}\right)}{dx}\\=&({e}^{(xsqrt(2) + 1)}((sqrt(2) + x*0*\frac{1}{2}*2^{\frac{1}{2}} + 0)ln(e) + \frac{(xsqrt(2) + 1)(0)}{(e)}))\\=&{e}^{(xsqrt(2) + 1)}sqrt(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !