Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({e}^{x} + 1)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(3(x))} + 3{e}^{(2(x))} + 3{e}^{x} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(3(x))} + 3{e}^{(2(x))} + 3{e}^{x} + 1\right)}{dx}\\=&({e}^{(3(x))}((3(1))ln(e) + \frac{(3(x))(0)}{(e)})) + 3({e}^{(2(x))}((2(1))ln(e) + \frac{(2(x))(0)}{(e)})) + 3({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0\\=&3{e}^{(3x)} + 6{e}^{(2x)} + 3{e}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return