There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({e}^{2}x + 1)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}e^{6} + 3x^{2}e^{4} + 3xe^{2} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}e^{6} + 3x^{2}e^{4} + 3xe^{2} + 1\right)}{dx}\\=&3x^{2}e^{6} + x^{3}*6e^{5}*0 + 3*2xe^{4} + 3x^{2}*4e^{3}*0 + 3e^{2} + 3x*2e*0 + 0\\=&3x^{2}e^{6} + 6xe^{4} + 3e^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !