There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ({e}^{x})({x}^{4})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4}{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4}{e}^{x}\right)}{dx}\\=&4x^{3}{e}^{x} + x^{4}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&4x^{3}{e}^{x} + x^{4}{e}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3}{e}^{x} + x^{4}{e}^{x}\right)}{dx}\\=&4*3x^{2}{e}^{x} + 4x^{3}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 4x^{3}{e}^{x} + x^{4}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&12x^{2}{e}^{x} + 8x^{3}{e}^{x} + x^{4}{e}^{x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12x^{2}{e}^{x} + 8x^{3}{e}^{x} + x^{4}{e}^{x}\right)}{dx}\\=&12*2x{e}^{x} + 12x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 8*3x^{2}{e}^{x} + 8x^{3}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 4x^{3}{e}^{x} + x^{4}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&24x{e}^{x} + 36x^{2}{e}^{x} + 12x^{3}{e}^{x} + x^{4}{e}^{x}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 24x{e}^{x} + 36x^{2}{e}^{x} + 12x^{3}{e}^{x} + x^{4}{e}^{x}\right)}{dx}\\=&24{e}^{x} + 24x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 36*2x{e}^{x} + 36x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 12*3x^{2}{e}^{x} + 12x^{3}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 4x^{3}{e}^{x} + x^{4}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&24{e}^{x} + 96x{e}^{x} + 72x^{2}{e}^{x} + 16x^{3}{e}^{x} + x^{4}{e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !