There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{d({e}^{(xy)}sin(x + y))}{y}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{d{e}^{(yx)}sin(x + y)}{y}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{d{e}^{(yx)}sin(x + y)}{y}\right)}{dx}\\=&\frac{d({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)}))sin(x + y)}{y} + \frac{d{e}^{(yx)}cos(x + y)(1 + 0)}{y}\\=&d{e}^{(yx)}sin(x + y) + \frac{d{e}^{(yx)}cos(x + y)}{y}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !