There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2{x}^{2}sqrt(x) - x + 2{\frac{1}{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{2}sqrt(x) - x + \frac{2}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{2}sqrt(x) - x + \frac{2}{x^{2}}\right)}{dx}\\=&2*2xsqrt(x) + \frac{2x^{2}*\frac{1}{2}}{(x)^{\frac{1}{2}}} - 1 + \frac{2*-2}{x^{3}}\\=&4xsqrt(x) + x^{\frac{3}{2}} - \frac{4}{x^{3}} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !