There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{(3x - 2)(x - 1)}{(5 - 2x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})\right)}{dx}\\=&\frac{(3(\frac{-(-2 + 0)}{(-2x + 5)^{2}})x^{2} + \frac{3*2x}{(-2x + 5)} - 5(\frac{-(-2 + 0)}{(-2x + 5)^{2}})x - \frac{5}{(-2x + 5)} + 2(\frac{-(-2 + 0)}{(-2x + 5)^{2}}))*\frac{1}{2}}{(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}}\\=&\frac{3x^{2}}{(-2x + 5)^{2}(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}} + \frac{3x}{(-2x + 5)(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}} - \frac{5x}{(-2x + 5)^{2}(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}} + \frac{2}{(-2x + 5)^{2}(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}} - \frac{5}{2(-2x + 5)(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !