There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - x - sqrt((1 - 4){x}^{2} - 2x + 1))}{(2{x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{\frac{1}{2}sqrt(-3x^{2} - 2x + 1)}{x^{2}} - \frac{\frac{1}{2}}{x} + \frac{\frac{1}{2}}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{\frac{1}{2}sqrt(-3x^{2} - 2x + 1)}{x^{2}} - \frac{\frac{1}{2}}{x} + \frac{\frac{1}{2}}{x^{2}}\right)}{dx}\\=& - \frac{\frac{1}{2}*-2sqrt(-3x^{2} - 2x + 1)}{x^{3}} - \frac{\frac{1}{2}(-3*2x - 2 + 0)*\frac{1}{2}}{x^{2}(-3x^{2} - 2x + 1)^{\frac{1}{2}}} - \frac{\frac{1}{2}*-1}{x^{2}} + \frac{\frac{1}{2}*-2}{x^{3}}\\=&\frac{sqrt(-3x^{2} - 2x + 1)}{x^{3}} + \frac{3}{2(-3x^{2} - 2x + 1)^{\frac{1}{2}}x} + \frac{1}{2(-3x^{2} - 2x + 1)^{\frac{1}{2}}x^{2}} + \frac{1}{2x^{2}} - \frac{1}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !