There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (0.06x + 0.04){\frac{1}{(0.06x - 0.03x + 0.01)}}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.06x{\frac{1}{(0.06x - 0.03x + 0.01)}}^{0.5} + 0.04{\frac{1}{(0.06x - 0.03x + 0.01)}}^{0.5}\right)}{dx}\\=&0.06{\frac{1}{(0.06x - 0.03x + 0.01)}}^{0.5} + 0.06x({\frac{1}{(0.06x - 0.03x + 0.01)}}^{0.5}((0)ln(\frac{1}{(0.06x - 0.03x + 0.01)}) + \frac{(0.5)((\frac{-(0.06 - 0.03 + 0)}{(0.06x - 0.03x + 0.01)^{2}}))}{(\frac{1}{(0.06x - 0.03x + 0.01)})})) + 0.04({\frac{1}{(0.06x - 0.03x + 0.01)}}^{0.5}((0)ln(\frac{1}{(0.06x - 0.03x + 0.01)}) + \frac{(0.5)((\frac{-(0.06 - 0.03 + 0)}{(0.06x - 0.03x + 0.01)^{2}}))}{(\frac{1}{(0.06x - 0.03x + 0.01)})}))\\=&\frac{-0.000054x^{2}}{(0.06x - 0.03x + 0.01)^{\frac{1}{2}}(0.06x - 0.03x + 0.01)(0.06x - 0.03x + 0.01)} + \frac{0.000027x^{2}}{(0.06x - 0.03x + 0.01)^{\frac{1}{2}}(0.06x - 0.03x + 0.01)(0.06x - 0.03x + 0.01)} - \frac{0.000009x}{(0.06x - 0.03x + 0.01)^{\frac{1}{2}}(0.06x - 0.03x + 0.01)(0.06x - 0.03x + 0.01)} - \frac{0.000036x}{(0.06x - 0.03x + 0.01)^{\frac{1}{2}}(0.06x - 0.03x + 0.01)(0.06x - 0.03x + 0.01)} + \frac{0.000018x}{(0.06x - 0.03x + 0.01)^{\frac{1}{2}}(0.06x - 0.03x + 0.01)(0.06x - 0.03x + 0.01)} - \frac{0.000006}{(0.06x - 0.03x + 0.01)^{\frac{1}{2}}(0.06x - 0.03x + 0.01)(0.06x - 0.03x + 0.01)} + \frac{0.06}{(0.06x - 0.03x + 0.01)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !