There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 + yx)}^{(y - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (yx + 1)^{(y - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (yx + 1)^{(y - 1)}\right)}{dx}\\=&((yx + 1)^{(y - 1)}((0 + 0)ln(yx + 1) + \frac{(y - 1)(y + 0)}{(yx + 1)}))\\=&\frac{y^{2}(yx + 1)^{(y - 1)}}{(yx + 1)} - \frac{y(yx + 1)^{(y - 1)}}{(yx + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !