There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {a}^{arctan({x}^{\frac{1}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {a}^{arctan(x^{\frac{1}{2}})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {a}^{arctan(x^{\frac{1}{2}})}\right)}{dx}\\=&({a}^{arctan(x^{\frac{1}{2}})}(((\frac{(\frac{\frac{1}{2}}{x^{\frac{1}{2}}})}{(1 + (x^{\frac{1}{2}})^{2})}))ln(a) + \frac{(arctan(x^{\frac{1}{2}}))(0)}{(a)}))\\=&\frac{{a}^{arctan(x^{\frac{1}{2}})}ln(a)}{2(x + 1)x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !