Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ \frac{(1 - cos(x))}{sqrt(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ \\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{6190283353629375cos(x)}{32768x^{\frac{31}{2}}} + \frac{950070886467877sin(x)}{16384x^{\frac{29}{2}}} - \frac{830114625965625cos(x)}{8192x^{\frac{27}{2}}} - \frac{143886535167375sin(x)}{4096x^{\frac{25}{2}}} + \frac{18767808934875cos(x)}{2048x^{\frac{23}{2}}} + \frac{1966151412225sin(x)}{1024x^{\frac{21}{2}}} - \frac{172469422125cos(x)}{512x^{\frac{19}{2}}} - \frac{13043905875sin(x)}{256x^{\frac{17}{2}}} + \frac{869593725cos(x)}{128x^{\frac{15}{2}}} + \frac{52026975sin(x)}{64x^{\frac{13}{2}}} - \frac{2837835cos(x)}{32x^{\frac{11}{2}}} - \frac{143325sin(x)}{16x^{\frac{9}{2}}} + \frac{6825cos(x)}{8x^{\frac{7}{2}}} + \frac{315sin(x)}{4x^{\frac{5}{2}}} - \frac{15cos(x)}{2x^{\frac{3}{2}}} - \frac{sin(x)}{sqrt(x)} - \frac{6190283353629375}{32768x^{\frac{31}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return