There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2arctan(x) + arcsin(\frac{2x}{(1 + {x}^{2})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2arctan(x) + arcsin(\frac{2x}{(x^{2} + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2arctan(x) + arcsin(\frac{2x}{(x^{2} + 1)})\right)}{dx}\\=&2(\frac{(1)}{(1 + (x)^{2})}) + (\frac{(2(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x + \frac{2}{(x^{2} + 1)})}{((1 - (\frac{2x}{(x^{2} + 1)})^{2})^{\frac{1}{2}})})\\=&\frac{-4x^{2}}{(\frac{-4x^{2}}{(x^{2} + 1)^{2}} + 1)^{\frac{1}{2}}(x^{2} + 1)^{2}} + \frac{2}{(\frac{-4x^{2}}{(x^{2} + 1)^{2}} + 1)^{\frac{1}{2}}(x^{2} + 1)} + \frac{2}{(x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !