Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {0}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {0}^{x}\right)}{dx}\\=&({0}^{x}((1)ln(0) + \frac{(x)(0)}{(0)}))\\=&{0}^{x}ln(0)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {0}^{x}ln(0)\right)}{dx}\\=&({0}^{x}((1)ln(0) + \frac{(x)(0)}{(0)}))ln(0) + \frac{{0}^{x}*0}{(0)}\\=&{0}^{x}ln^{2}(0)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {0}^{x}ln^{2}(0)\right)}{dx}\\=&({0}^{x}((1)ln(0) + \frac{(x)(0)}{(0)}))ln^{2}(0) + \frac{{0}^{x}*2ln(0)*0}{(0)}\\=&{0}^{x}ln^{3}(0)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {0}^{x}ln^{3}(0)\right)}{dx}\\=&({0}^{x}((1)ln(0) + \frac{(x)(0)}{(0)}))ln^{3}(0) + \frac{{0}^{x}*3ln^{2}(0)*0}{(0)}\\=&{0}^{x}ln^{4}(0)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return