Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(1 - xcos(y))} + z{e}^{(\frac{-1}{(1 + {y}^{2})})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(-xcos(y) + 1)} + z{e}^{(\frac{-1}{(y^{2} + 1)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(-xcos(y) + 1)} + z{e}^{(\frac{-1}{(y^{2} + 1)})}\right)}{dx}\\=&({e}^{(-xcos(y) + 1)}((-cos(y) - x*-sin(y)*0 + 0)ln(e) + \frac{(-xcos(y) + 1)(0)}{(e)})) + z({e}^{(\frac{-1}{(y^{2} + 1)})}((-(\frac{-(0 + 0)}{(y^{2} + 1)^{2}}))ln(e) + \frac{(\frac{-1}{(y^{2} + 1)})(0)}{(e)}))\\=&-{e}^{(-xcos(y) + 1)}cos(y)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return