There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{k}x}{arctan(x)} - \frac{1}{arctan(s)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x{e}^{k}}{arctan(x)} - \frac{1}{arctan(s)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x{e}^{k}}{arctan(x)} - \frac{1}{arctan(s)}\right)}{dx}\\=&\frac{{e}^{k}}{arctan(x)} + \frac{x({e}^{k}((0)ln(e) + \frac{(k)(0)}{(e)}))}{arctan(x)} + x{e}^{k}(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})}) - (\frac{-(0)}{arctan^{2}(s)(1 + (s)^{2})})\\=&\frac{{e}^{k}}{arctan(x)} - \frac{x{e}^{k}}{(x^{2} + 1)arctan^{2}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !