There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ax}{(1 + abx)}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xa}{(xba + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xa}{(xba + 1)}\right)}{da}\\=&(\frac{-(xb + 0)}{(xba + 1)^{2}})xa + \frac{x}{(xba + 1)}\\=&\frac{-x^{2}ba}{(xba + 1)^{2}} + \frac{x}{(xba + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !