There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 + ax)}{(1 + bx)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ax}{(bx + 1)} + \frac{1}{(bx + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ax}{(bx + 1)} + \frac{1}{(bx + 1)}\right)}{dx}\\=&(\frac{-(b + 0)}{(bx + 1)^{2}})ax + \frac{a}{(bx + 1)} + (\frac{-(b + 0)}{(bx + 1)^{2}})\\=& - \frac{abx}{(bx + 1)^{2}} + \frac{a}{(bx + 1)} - \frac{b}{(bx + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !