There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{t}{({t}^{2} + 5)})\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{t}{(t^{2} + 5)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{t}{(t^{2} + 5)})\right)}{dt}\\=&\frac{((\frac{-(2t + 0)}{(t^{2} + 5)^{2}})t + \frac{1}{(t^{2} + 5)})*\frac{1}{2}}{(\frac{t}{(t^{2} + 5)})^{\frac{1}{2}}}\\=&\frac{-t^{\frac{3}{2}}}{(t^{2} + 5)^{\frac{3}{2}}} + \frac{1}{2(t^{2} + 5)^{\frac{1}{2}}t^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !