There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(1 - x)sin(\frac{(1 - x)}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsin(\frac{1}{x} - 1) - x^{2}sin(\frac{1}{x} - 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(\frac{1}{x} - 1) - x^{2}sin(\frac{1}{x} - 1)\right)}{dx}\\=&sin(\frac{1}{x} - 1) + xcos(\frac{1}{x} - 1)(\frac{-1}{x^{2}} + 0) - 2xsin(\frac{1}{x} - 1) - x^{2}cos(\frac{1}{x} - 1)(\frac{-1}{x^{2}} + 0)\\=&sin(\frac{1}{x} - 1) - \frac{cos(\frac{1}{x} - 1)}{x} - 2xsin(\frac{1}{x} - 1) + cos(\frac{1}{x} - 1)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !