There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({e}^{x} + {(1 + {e}^{(2x)})}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln({e}^{x} + ({e}^{(2x)} + 1)^{\frac{1}{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln({e}^{x} + ({e}^{(2x)} + 1)^{\frac{1}{2}})\right)}{dx}\\=&\frac{(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + (\frac{\frac{1}{2}(({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 0)}{({e}^{(2x)} + 1)^{\frac{1}{2}}}))}{({e}^{x} + ({e}^{(2x)} + 1)^{\frac{1}{2}})}\\=&\frac{{e}^{x}}{({e}^{x} + ({e}^{(2x)} + 1)^{\frac{1}{2}})} + \frac{{e}^{(2x)}}{({e}^{x} + ({e}^{(2x)} + 1)^{\frac{1}{2}})({e}^{(2x)} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !