Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({e}^{x} + {(1 + {e}^{2}x)}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln({e}^{x} + (xe^{2} + 1)^{\frac{1}{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln({e}^{x} + (xe^{2} + 1)^{\frac{1}{2}})\right)}{dx}\\=&\frac{(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + (\frac{\frac{1}{2}(e^{2} + x*2e*0 + 0)}{(xe^{2} + 1)^{\frac{1}{2}}}))}{({e}^{x} + (xe^{2} + 1)^{\frac{1}{2}})}\\=&\frac{{e}^{x}}{({e}^{x} + (xe^{2} + 1)^{\frac{1}{2}})} + \frac{e^{2}}{2(xe^{2} + 1)^{\frac{1}{2}}({e}^{x} + (xe^{2} + 1)^{\frac{1}{2}})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return