There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arccos(\frac{(2x - 1)}{sqrt(3)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccos(\frac{2x}{sqrt(3)} - \frac{1}{sqrt(3)})\right)}{dx}\\=&(\frac{-(\frac{2}{sqrt(3)} + \frac{2x*-0*\frac{1}{2}*3^{\frac{1}{2}}}{(3)} - \frac{-0*\frac{1}{2}*3^{\frac{1}{2}}}{(3)})}{((1 - (\frac{2x}{sqrt(3)} - \frac{1}{sqrt(3)})^{2})^{\frac{1}{2}})})\\=&\frac{-2}{(\frac{-4x^{2}}{sqrt(3)^{2}} + \frac{4x}{sqrt(3)^{2}} - \frac{1}{sqrt(3)^{2}} + 1)^{\frac{1}{2}}sqrt(3)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !