There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 135.6271581{x}^{2} - 558.6383749x - 0.5907869lg(x) + 9.365593\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 135.6271581x^{2} - 558.6383749x - 0.5907869lg(x) + 9.365593\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 135.6271581x^{2} - 558.6383749x - 0.5907869lg(x) + 9.365593\right)}{dx}\\=&135.6271581*2x - 558.6383749 - \frac{0.5907869}{ln{10}(x)} + 0\\=& - \frac{0.5907869}{xln{10}} + 271.2543162x - 558.6383749\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{0.5907869}{xln{10}} + 271.2543162x - 558.6383749\right)}{dx}\\=& - \frac{0.5907869*-1}{x^{2}ln{10}} - \frac{0.5907869*-0}{xln^{2}{10}} + 271.2543162 + 0\\=& - \frac{-0.5907869}{x^{2}ln{10}} + 271.2543162\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !