There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -0.957303lg(x) + 35.806{x}^{3} - 72.4178{x}^{2} - 649.60384x + 15.579114\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -0.957303lg(x) + 35.806x^{3} - 72.4178x^{2} - 649.60384x + 15.579114\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -0.957303lg(x) + 35.806x^{3} - 72.4178x^{2} - 649.60384x + 15.579114\right)}{dx}\\=&\frac{-0.957303}{ln{10}(x)} + 35.806*3x^{2} - 72.4178*2x - 649.60384 + 0\\=&\frac{-0.957303}{xln{10}} + 107.418x^{2} - 144.8356x - 649.60384\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-0.957303}{xln{10}} + 107.418x^{2} - 144.8356x - 649.60384\right)}{dx}\\=&\frac{-0.957303*-1}{x^{2}ln{10}} - \frac{0.957303*-0}{xln^{2}{10}} + 107.418*2x - 144.8356 + 0\\=&\frac{0.957303}{x^{2}ln{10}} + 214.836x - 144.8356\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !