There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{6000(1200 + x)}{(1200 + x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6000x}{(x + 1200)} + \frac{7200000}{(x + 1200)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6000x}{(x + 1200)} + \frac{7200000}{(x + 1200)}\right)}{dx}\\=&6000(\frac{-(1 + 0)}{(x + 1200)^{2}})x + \frac{6000}{(x + 1200)} + 7200000(\frac{-(1 + 0)}{(x + 1200)^{2}})\\=& - \frac{6000x}{(x + 1200)^{2}} - \frac{7200000}{(x + 1200)^{2}} + \frac{6000}{(x + 1200)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !